```
AOTHOR Eerry. Richard M.
TITLE
INSTITOTION
FEPOPT NO
POB DATE
NOTE
AVAIIABLE FRCM National Science Foundation, Washington, DC 20550
EDFS PRICE
DESCRIETOES
```


ABSTPACT
The continued increase in the number of academically employed scientists and engineers (S/E) in the face of financial constraints in hiaher education is analyzed, based on dara from the National Science Foundation's academic science surveys and extensive interviews of university officials at 23 institutions. The following arєas are addressed: factors behind growth in academic S/E professional employment, institutional distribution of research, changing emplovment characteristics of academic researchers, women scientists in academe, and implications for the future. Among the findings are the following: increases in S / E professional emplopment in academe have teen concentrated in recent years in doctorate-arantina institutions: increased research and development funding from bcth federal and nonfederal sources seems to be the principal factor responsible for recent growth in employment of academic S/E: research is being increasingly emphasized as a means of attractina support $\ddagger \circ r$ S/E professional staff: research emphasis is influencing the types cf positions offered to applicants for S / E iobs: institutions in the. lower quartiles of research perfcrmance are expected to be relatively vulnerable tc financial adversity resulting from high rates of inflation and demographic shifts caused by anticipated declines in the colleae-age population: and $5 / E$ personnel on short-term renewable research contracts, including many newly recruited women scientists, are expected to be especially vulnerable to any future reductions in force. Notes of the research methodology and data Eeliability are included. (SW)

[^0]
employment

 pattems of academic scientists and engineers
1973-78

-PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."
YHIS OOCUMENT HAS REEN REPRO OUCED EXACYLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN. ATING:T POINTS OF VIEW OR OPINIONS STATED OO NOT NECESSARILY REPRE ENT OFFICIAL NATIONAL INST TEOF
s national science foundation
special report

related publications

NSF No Price
Science Resources Studies Highlights
R\&D Funds
"Doctoral Institutions Report 6° o Real Increase in R\&D Expendi- tures in FY 1978" $80-301$ ——
S/E Personnel
"Academic Employment of Scientists and Engingeers Increased 4% in Doctorate Institutions in 1979° 80-309

\qquad
"Graduate Science Enrollment in Doctorate-Granting Institutions Leveled Off in 1978" 79-321

\qquad
Detailed Statistical Tables
R\&D Funds
Academic Science: R\&D Funds, Fiscal Year 1978 79-320
S/E Personnel
Academic Science: Scientists and Engineers, January 1979 79-328
Academic Science: Graduate Enrollment and Support. Fall 1978 79-316 ——
Reports
Composite
Academic Science, 1972-77: R\&D Funds, Scientists and Engineers, and Graduate Enrollment and Support 80-313 $\$ 4.25$

Availability of Publicalions

Those publications marked with a price should be obtained directly from the Superintendent of Documents, U.S. Government Printing Olfice. Washington, D.C. 20402. Where no price is listed, single copies may be obtained gratis from the National Science Foundation. Washington. D.C. 20550
(See inside dack cover for Other Science Resources Publications.)

foreword

Academic: science is the product of many factors; consequently. explanation of the behavior of the academic science system is not simple and the apparent relationship of factors may, at first glance, be baffling. One of such cases is the main topic of this report, namely, the continued increase in the number of academically employed scientists and engineers in the face of financial constraints. Questions which are addressed include: What were the characteristics of the science and engineering (S/E) growth in academe? Whiy did institutions continue to increase S / E employment in light of pending demographic shifts in the college-age population? What might be some of the consequences of these growth patterns? The analyses presented are based on data from the National Science Foundation's academic science surveys and extensive interviews of university officials at 23 institutions. It is hoped that the picture that has emerged from these studies will provide a better understanding of academic employment practices and will be useful to both the institutions and the Federal Government in shaping future decisions.

Charles E. Falk +
Director, Division of Science Resources Studies
Directorate for Scientific, Technological, and International Affairs

July 1980

notes

The primary data sources used in this report are from three annal survers of atademic institutions conducted by NSF that concern S/E professionals, R\&D) expenditures, and graduate S / E students and postdoctorates.

For a more detailed description of the institutional sample design and selection. see the technical notes at the end of this report.

For information on the a a alability of data tapes, contact Moshman Associates, Inc., (itu0) Coldshoro Road, Washington, D.C. 20034, or telephone 301-239-3000.

This report was prepared in NSF゙s Division of Science Resources Studies. Charkes E. Falk. Division Director. The principal author was Richard M. Berry. Study Director. I niversities and Nonprofit Institutions Studies Group. Site visits to a sample of institutions of higher education were conducted by three NSF staff members: Richard M. Berry, James B. Hoehn, and Susan G. Broyles. Nathain Diskmeyer of the American Council on Education assisted in conducting the field interviews under contract with NSF. William I.. Stewart, I Head of the R\&D Economic Studies Section, provided general guidanceand review. The report could not have been prepared without excellent cooperation from university officials who served as respondents io NSF"s annual surveys of academic science resources statistics and especially those officials who participated in the field interviews.

contents

Q

Highlights 1
Trends 1
Future Directions 1
Introduction 2
Overview 3
Factors Behind Growth in Academic S/E Professional Employment 4
Institutional Distribution of Research 6
Changing Employment Characteristics of Academic Researchers 8
Women Scientists in Academe 9
Toward the Future 10
Summary 12Appendix:
Technical Notes 14

highlights

trends

- Recent increases in academic employment of S / t professienals, averaging around 3 percent annually: have been concentrated in doctorate-granting universities. These universities accoumted for almost two-thirds of the net growth in academic scientists and engineers during 1973-78.
- In field interviews the reason most prominently mentioned be institutional officials for the growth of S / E professionals was increased research support. R\&D expenditures at doctorate-granting institutions rose hy more than 57 percent during 1973-78, or by more than 9 percent in real lerms: federally funded Rx) activities at these institutions increased by 4 percent in real dellars. As a result of such growth in R\&1) expendilures. full-lime-equivalent (FTE) involvement in R\&1) activities by academic scientists and engineers increased al douhte the rate of their involvement in teaching and other activities.
- iemployment of scientists and engineers grew fastest. or ower 3 percent annually, during 1973-78. in doctorate institutions outside the "distinguished" category of Ladd-l, ipset rankings of U.S. universilies. Most of the growth was allrihutable to the institutions' augmenting their S /E staff in altempts to achieve educational excellence by launching new or improved graduate and research programs. Rates of growth in Fecteral research funding to universities outside the lop low doctorate recipients (ranked by Federal R\&D) supporll exceeded hy more than 50 percent those shown for the top 10 universities.
- Fer "distinguished" research institutions the factors most frequently mentioned behind S / E employment growth during the seventies were (1) Absence of a need to hedge against pending demographic shifts because of strong demand for beth undergraduate and graduate education in the sciences and engineering: and. (2) Confidence in the ability of the institutien to continue attracting Federal and other ontside support for research projects.
- Wilharespect to hiring praciices, research is playing a greater mole in most institations in the setection of new S / E
staff. Not onty is research viewed as an adivily providing the primary means of upgrading the guality of instilutions and departments, it is also an increasing! y important source of revenue. By 1978 research comprised almost one-fifth of total education and general income at universities. Selection commiltees charged with recommending new S/E hires increasingly select applicants with research experience. Also. there is an increasing tendency to hire new scientists and engineers on nontenure tracks, with renewal of short-tern contracts dependent on their ability to continue to attract external support.
- Women accounted for almost one-third of the net 1974-78 growth in employment of full-tine academic scientists and engineers. Women scientists and engineers employed full time by doctorate-granting institutions increased by about three times the rate of men during this period. However, results of the field interviews confirmed the findings of other recent studies that many of these women were hired under short-term arrangements supported by research grants and contracts. According to university officials interviewed, this practice helped to achieve dual objectives-one relating to alfirmative action and another tied to overall financial solvene:

future directions

- Officials interviewedat the "distinguished" Ladd-Lipset instilutions expressed optimism about the fulure. They believe that the projected decline in U.S. college enrollments will have little, if any, effect on their institutions because of a cantinuing demand for educational quality by student applicants.
- The most vulnerable institutions are those outside the "distinguished" category that pushed to upgrade guality by launching new research and graduate programs. These same institutions hired relatively large numbers of investigators who exist on "soft money" from Federal agencies and other outside sponsors. They are especially exposed to expected filture adversity resulting from shifting demographic patterns impacting on the college-age population.

introduction

Most of the statistical analysis contained in this report is based on special tabulations of data on employment of scientists and engineers, R\&D expenditures. graduate science student enrollment. and utilization of postdoctorates in 271 institutions granting the doctoral degree. Because data shown here are limited to matched comparisons in these institutions, they do not agree with statistics contained in other National Science Foundation (NSF) publications covering various characteristics of acalemic science in all universities and colleges.

The data have been supplemented by interviews of academic officials at a sample of 23 institutions. These 23 institutions accounted for 15 percent of all academic S/E employment in 1978 and 18 percent of the net growth in all scientists and engoneers in academe during 1973-78. For the most part, the institutions selected for interviews were among the highest ranked in terms of S / E employment growth in the seventies.

They are not statistically representative of all universities and colleges in the country since only two institutions with S/E personnel declines during the study period were in the sample. These two were included to contrast with the others where professional S/E employment increased.
The topics addressed in this report center around the continual increases in employment of academic scientists ant engineers even though numerous studies chaim that fiscal constraints exist in much of the higher education sector.'

[^1]According to these studies, universities are canght in a financial vise because income from both public and private sources has not been rising at sufficient rates to halance costs which have been escalating sharply because of several factors, notably inflation.
During periods of finameial adversity, conventional economic wistom calls for reductions in employment. This would seem to be particelarly true for universities and colleges where wages and salaries comprise the largest proportion of total expencitures. For example, a typical institution may expend about three-fourths of its total current funds for wages and salaries. 'Thus, this study was designed to identify factors that would explain why academic administrators continued to hire additional scientists and engineers when faced with present conditione of financial adversity and when higher education is entering a period where enrollment declines may make the fiscal future even more uncertain.

overview

Athough their numhers are relatively small in relation to national totals, acadenicesciantists and engineers play a special role in the performance of hasic: research and in the education and training of future generations of scientists and engineers. More than one-half the Nation's basic: research performance, as measured by expenditures, is carried out be academic scientists and engineters and nearly three-fifths of the total, if university-administered federally funded research and development centers (FlFRDC's) are included. These figures understate the actual amounts spent on basic research in the academic sector since work on activities carried

> Chart 1. Employment of scientists and engineers in the United States: 1972 and 1978

> Chart 2 Scientlsts and engineersemployed at universities and colleges by type of Institution

out as departmental research cannot be reliably measured because it is an inextricable part of instructional aceounts.
A total of 306,500 professional scientists and engineers were employed in U.S. universities and colleges in 1978 , accounting for one of eight in all sectors of the econumy. For the 6 -year period beginning in 1972, both academia and industry slightly increased their shares of the national total of S/E employment (chart 1).
Annual increases in professional S/E employment in all universities and colleges averaged 3 percent during 1973-78. Although these growth tates are half those occurring in the 1965-73 perioti, questions remain about how and why institutions continued to augment their professional S/E staffs. What categories of institutions accounted for recent growth in academic scientists
and engineers? Did these institutional growth patterns reflect administrative reaction to financial constraints revealed in a number of studies?

As shown in chart 2 , the total 1965-78 growth of academic S/E professionals occurred primarily in doctorate-granting institutions (63 percent). By comparison. only 20 percent of the increase occurred in nonscience degree-granting institutions, 14 percent in master's institutions, and just 3 percent in institutions granting only the bachelor's degree.
Because doctorate-granting universities were dominant, growth rates for all institutions are similar to those of Ph.D.-granting universities. 'the largest rates of growth were observed for environmental scientists and mathematical and computer scientists (chart 3).

factors behind growth in academic s/e professional employment

Field interviews at 14 of the 33 sampled institutions indicated that increases in research funds were primarily responsible for most of the increased entployment of stientists and engineers. The factors motivating the hiring of regular, tenure-track faculty at these institutions were not necessarily the same ones behind the hiring of scientists and engineers employed from year to year as researchers. For repular fatuity, the level of carellments was. in general, the most important factor determining hiring reguirements. For researchers. success in obtaining outside support was most often cited as the major determining factor. While many institutions in the sample were in the Ladd-Lipsel "distinguished" category, there are indications that this emphasis on research is widespread among all doc-torate-granting institutions, as the less prestigious institutions strive to gain

Chart 4. R\&D expenditure:s in the sciences and engineering at doctorate-granting universities

reputations for academic excellence by launching new research and gradiate programs and upgrading existing ones. "Distinguishod" institutions were identified in a survey conducted by Everelt C: Ladd, Jr: and Seymour Martin Lipsel in which respondents were asker! ". . . In nema the five departments that have the most distinguished facullies," in the order of their importance in 1977. Distinguished institutions were considered in the hadd-Lipset study as those that were rated among the top five in each discipline. including those classified as science and engineering, by at least 10 percent of the respondents in each of 19 fields.:

Data on academic: R\&D expenditures support the observation of the inter-

Ten or the e3 institntions in the firld interview somple: were chassified as "distinguished" in a study condmeted hy tiverell ladal and seymone l.jpset. See the Chroniche:

Chart 5. Scientists and engineers employed at doctorate-granting universities
 by FTE' involvement in R\&D activities and teaching and other activities

${ }^{2}$ Full-time-equivatent.
. SOURCE: National Science Foundalion

Viewees on preater emphasis on researeh fumding as a support mechanism for S/E professionals. RND expenditures of doctorate-granting institutions inareased he more than 5 percent daring 1973-78, or more than 9 percent after djusting for inflation (chart 4). Fenderal R心l)funding at these insfitutions went up 30 percent during the 5 -vear period. or 4 percent in real terms. As a result of this growth in Rex $)$ expenditures, the number of Fre S/E professionals involved in academic RXl) activities in doc:urate-granting institutions increased at twice the rate (2epercent) of those involved in teaching and other al. نities (11 percent) as shown in chart 5 .

Another indicator of increasing RND activity is growth in the mumber of gradnate research assistants at doc-forate-ghanting institutions, up iroman estimated 37.200 in 1972 2 $04.3,800$ in 1977. an increase of 18 percent (chart (i). The number of teaching assistants increased at a lesse! rate- 10 pertent oter the same preriod.

Chart 6. Graduate sciencel engineoring enroliment at doctorate-granting universities by mechanisms of support ${ }^{\text {a }}$

${ }^{\text {a }}$ Totais for 1972 and 1973 are estimates basied on NSF survey data, as explained in the inchnical notes. sOURCE: National Science Foundation

institutional distribution of research

During the 1973-78 period Federal acac'emic $\mathrm{R} \& \mathrm{D}$ funding has grown at higher rates in institutions outside the top 100 recipients (chart 7). These distribution patterns reflect national policies for wider institutional and geographic dispersion. Accordingly. annual growth rates during 1973-78 in Federal R\&D funds to doctorate granting institutions outside the top 100 recipients were over 10 percent, compared with 7 percent for the top; io institutions and around 8 percent for all others in the top 100.
Partly as a result of wider distribution

of Federal funds, research is being utilized by some of the less prestigious doctorate-granting institutions as a vehicle to upgrade their reputations for scholarly excellence. These institutions reported average annual rates of growh in S/E employment during 1973-78 that exceeded the rates of "distinguished" instilutions (3 percent vs. 1 percent). These institutions, along with their total and federally funded R\&D expenditures are shown in table 1.

Whe 33 "distinguished" institutions accounted for 44 percent of total aciademic R\&D expenditures by doctorategranting institutions and slightly more of total federally funded R\&I) supported in academe in 1978. However, institutions outside the "distinguished" grouping (henceforth, called "other") ex-
perienced larger rates of growld during 1973-78 Gchart-8) These -"other" doc-torate-granting institutions e:.jerienced average annual growth rates for total R\&D expenditures oi 10 percent in current dollars, compared with 9 percent for the "distinguished" grouping. The higher growth rates of the "other" category were driven by Federal funding of R\&I) activities, which increased by 9 percent annally daring 1973-78, in comparison wia 8 percent in the "distinguished" institutiens. The total number of graduate science students in institutions in the "other" Gategory - yrew at more than twice the rate of the "distinguished" institutions and utilization of research assistants and postdoctorates grew about three times greater in "other" institutions.

Table 1. Total and federally financed R\&D expenditures at "distinguished" institutions: FY 19781
, [Dollars in thousands]

These "distinguished" institutions were identified in a survey conducted by Everett C Ladd. Jr and Seymour Martin Lipset
NOTE E" denotes estimated amount by NSF
SOURCE National Science Foundation

chànging employment chacteristics of academic researchers

There are indications, borne out by the campus interviews and supported by other studies, that emphasis on sponsored research influences institutional recruitment policies and practices. For example, a study carried out by the National Research Council (NRC) found that large research-oriented universities are expanding their utilization of nonfaculty research persunnel, especially phesical and biological scientists.' Included in this group are postdoctoral appointees, doctoral research staff, and other nonfaculty staff primarily involved in research. NSF data on postdoctoral utilization confirm one of these findings. Postdoctoral utilization by doctorate-granting institutions increased by 11 percent between 1972 and 1977 (chart 9). By 1977, the 19,700 postdoctorates in these institutions represented about one-tenth of the total academic S / E professionals.
A recent study of nonfaculty research staff found that, botween 1975 and 1977 . the numbers of academic employees

 आ
.

Chan 8. Postdoctorates utilized In the sclences and engineering at doctorate granting Institutions:

holding these research staff positions increased by en percent, roughly $21 / 2$. limes the faculty growth rate.' Another related study reported that in 1977. departments of medicine accounted for 40 percent of nontenure-track personnel. with chemistry (19 percent), biochemistry (13 percent), and biology (12 percent) also has ing relatively large numbers.

The field interviews showed that a number of institutions are making academic: appointments on a year-toyear hasis contingent on the ability of newly hired scientists and engineers to bring in sponsored research funds. Commillees charged with recommending new hires among scientists and engineers increasingly based their selection criterta on the applicant's ability to attract outside research support. Renewal of short-term contracte of these researchers often depends on their continuing ability to attract external suppori.

[^2]
women scientists in academe

All institutions in the field study had affirmative action programs and in m ist cases these procedures were the o.. y central attempt ta control faculty hiring. There are indications from NSF data that eguity considerations are influencing the numbers and characteristics of newly employed academic S/E professionals," For example, female scientists and engineers employed full time. although accounting for only 15 percent of full-time academic S / E professionals, accounted for almost one-third of the net growth in full-time employment during 1974-78 and increased almost three times as fast as males (chart 10).

Women accounted for all of the net growth in science faculty at the assistant professor level in the top 50 universities. ranked by Federal $R \& l$ obligations, and for nearly one-half the increase at

[^3]
all other institutions.- Evidence points to the fact, moreover, that many women are-being recruited into nonfaculty research positions. Another study, carried but under an NSF grant, concluded that while the number of women scientists and engineers employed full time increased rapidly in the seventies, new female entrants tended to be in nontenured positions and in a limited number of scientific fields, ${ }^{\prime} A l$ lso, the NRC study of nonfaculty doctoral researchers cited previously found that women were recruited for these positions in relatively large numbers in the fields of psychology, biosciences, and the social sciences." A related survey of academe in 1977 revealed that about one-fifth of nontenure-track faculty and staff were women.'"

[^4]
toward the future

Questions have recently been raised about the ability of academic institutions to recruit scientists and engineers in the face of rising costs resulting from inflation and reduced income caused by demographic: shifts. In fulure years, income from undergraduate thition, the most important determinant of faculty hiring, is expeeted to decline. The Census Bureall estimates that 1979 will be the peak year for the number of 18-year-olds in the U.S. population, the age group impacting most heavily on new entrants into higher education. According to these estimates the number of persons ia the college-age groups is expected to drop about 18 percent over the 1959-86 period. and that factor is expected to reduce the demand for professional employmext in academe. Further evidence of a possible reduction in demand for academic scientists and engineers by doctorate institutions is the slowdown between 1975 and 1978 in the rate of grow of graduate S / E ensollment as illustrated earlier in chart 6. The slower steadier pace during this period contrasts sharply with the expansion atmosphere of the earls seventies and has heen trated to higher tuition rates. a decline in the number of veterans enrolling in graduate programs. and an increase in joh offers to hachelor s-degree holders-factors that affected both science and nonscience graduate programs. ${ }^{\text {. }}$

[^5]The concentration of S / E professional employment growih in doctorategranting institutions explarns partially why increases persist in light of expected demographic prohlems. A number of recent studies." as well as information ohtained in the fied interviews, have shown that many of these doctorateמanting institutions, particularly those considered as "prestigious." are less susceptible to the full impact of - declines in college enrollment than other institutions of higher education. Top administrators interviewed stated, with one exception that the propected deeline in U.S. college enrollments shonild have limbe. if ans. impact on total engollments at their institutions. Interviewees believed that their institutions repitutations shoild draw sufficient undergraduate and gataluate applications in the sciences and engincering tomaintain hoth tuition income and fuality. The elevated position which these "prestigious" schools ocoupy is indicated by the carrent acceptance rates for admission: all had many more student applicants than they accepted as exemplified by one bastilution which currently accepts only 1 of 35 ipplicants in S / E programs. Additionally, several institutions had alreadle estahlished ceilings on student enrollments in S/F areas where fiture declines in student interests are expected and, in the opinion

[^6]of the interviewees, these enrollment levels should be easily maintained.

These field interview findings were confirmed! he a study conductedhy NRC. under contract from NSF "That study, while recogni»ing that enrollment growth is ending and demands for new faculty are going to fall, concluded that:
-Bxpected declis es in enrollment are one hasis for predictions that now hires in atademic science and engeneering will fallower the next decade. But it is doubtful that these demographic effects will be felt with as much forceat the major research institutions, which tend whave strong student markets relative to the rest of higher educalion. The major universities have not in the past had on the werage as close a link hetween their faculty size and emrollment demographics as have other eolleges and miversities."
In terms of institutional finances and their impact on the hiring of scientists and engineers, the direct tie that exists hedween revenues and enrollment makes it diliicull to separate the two because of the heary reliance of many schools on tuition income. Field interviews showed, moreover, that for many institutions there is a considerable time lag between the initial impacts of financial adversily anil forced reductions of scientists and engineers. Only meinstitution had endergone aperiod of fimancial prohlems significant enough to requirereductions of S / E employment through attrition.

When asked about the possibility of loss of financial vitalits resulting fromi fature downturns in enrollment, university officials observed that reductions in S/E faculty wonld only he resorted to as achast step indicating a "erisis state:" in their institutions. Any butgetary squeeze would first tatuse such purchases as supplies to be cat. Then. acequisition of equipment replacement for items mateobsolete by techoological advances might be posifoned Next. technical, clerical, or administrative support stalf micha be reduced. Onls
after these measures are taken to reduce costs would regular facolty positions be cul back.

Nearly all of the lop administrators intervieved. especially those in "distinguished" institutions, expressed confidence that a high demand for educatonal gnality he undergraduate and graduate: S/E students shombleontinue into the foreseeable future and that becabse of this demand and the ensuing attition income a reduction in the number of scientists and engineers emploved in their institutions was not
likehy. ()mer tacturs helping to guarantee alleqpate poeraling revenues were large endownents. He comtinuine ability to attract researeh support by the prestigious investigators on their faculty roles. and their established reputations for excellence in their grathate programs. The attitude of eonfidence expressed in these interviows, howewer. is probably mot shamed by all higher education officials, since the 23 sampled institutions consisted primarily of those with established reputations for educatiomal excellemae.

summary

Increases in s/k professional emplosment in academe have been concentrated in recent years in doctorategranting institutions. These institutions. expecially major research universities with established reputations for educational excellence, continue to have strong student markets. Consequently. their hiring practices are not as directly dependent on enrollment demographics as are other institutions. Instead. increased R\&D funding from both Federal and non !ederal sources seems to have been the principal factor responsible for recent growth in emplowment of academic scientists and engineers.

Research is being increasingly emphasized as a means of attracting support for S'F professional staff. Rates of
growth of S / E professional employment have heen highest in doclorale:-granting universities outside the "distinguished" category of institutions. For many of these institutions, research. combined with graduate programs, is a means of attaining scholarly excellenco. 'lhe funding policies of Federal agencies. the main source of academic researeh support, are producing fasler rates of growth in institutions outside the lop 100 recipients of federally funded RND activilies. Research emphasis is also influencing the lypes of positions offered (t) applicants for S/E: johs. Nant institutions are basing their hiring decisions on the applicants ability to altrace outside monies in support of research projects. Renewal of contracts on a year-lo-year hasis is contingent on the
sombinump availahility of sponsored researeh funds. primarily those from Federal agenties.

Instibutions in the lower quartiles of research performance are expected to he relatively volned ble fo financial adversity resulting from high rates of inllation and demographis: shifts caused by anticipated dectines in the college-age population. S'S persomnel in short-term rencowahle rese arch contracts, inchuting many of the newly recruited women scientists, are expected to be especia!ly volnerable to any lult re reductions in force necessitated hy combinations of ecomomic: and demographic: fatelors and any real decreases in foderal Rakl) suppore.

appendix

 technical notes
technical notes
 Fs

General Methodology

This special study is based on structured interviews with university administrators and officials at $1+$ public and 9 private doctorate-granting institulions. Thirteen of these interviows were conducted by NSF representatives and 10 by an American Councilon Education official working under contract to NSF. Structured interview guidelines were developed by NSF.
One inditidual on each of the 23 campuses served as coordinator for the 'aly. Cenerally, the coordinator was located in a central position in terms of data systems, planning, or research administration. Alelter was sent to the campus coordinators outlining the purpose of the study a ad reguesting participation in selling up interviews with administrators and faculty. At least one full day. and in most cases two days, were spent at each institution for interviews. Before the campus visits, coordinators were provided with institutional profiles containing NSF personnel survey data for the 1973-78 period and with structured interview guidelines to be distributed to interviewees. The positions of the interviewees varied but included presidents. vice presidents for researeh adminis-
tration, personnel directors, graduate deans, and institutional researchers.

Sample Selection

The size of the institutional sample: was based on both cost and time factors, as well as analytical and sampling consicierations. To maximize cos // benefit :orsoiderations, the institutional sample was selected from a list of institutions reporting the largest increases in professional employment during the study period 1973 through 1978. In addition, two institutions that had reported declining employment levels were selected.

The universities visited during this study employed 15 percent of all academic scientists and engineers in 1978 and 24 percent of all those employed in doctorate institutions. They accounted for 14 percent of the public institution S/E total and 18 percent of the private university S/E total. In addition, the sludy group accounted for 18 percent of the Dotal change in S / E employnent during the 1973-78 period.

Data Reliability

As part of the structured campus interviews guestions were asked about
the institutional record somrees used to report data to NSF in the Survey of Scientific: and Engineering Personnel Emploved at Universities and Colleges. At all 23 institutions, the interviewees indicated that to the best of their ability. the personnel data were reported according to NSF survey instructions. Only in recent years, however, have institutions fell it necessary to maintain accurate records on the numbers and characteristics of their employees. In earlier vears in the NSF data series. institutional personnel files were primarily mantained to meet payroll requirements. As social legislation for equal employment opportunities emerged, along with reporting requirements of Federal and State agencies. institutions began to matintain more extensive central records, by and large computerized, on various characteristics of their emplosees.

The greatest degree of inaceuracy in the data supplied to NSF was uspuidy associated with decentralized reporting practices. In cases where institutions sent the NSF guestionnaires to offices of graduate deans or department chairs, the Hernover of staff who were assigned to complete the forms was particularly high from sear to year. Conseguently, subjective interpretations of survey requirements. varying greally from one survey period to another, resulted in a
lack of consistency in reporting trend data. Five of the 23 institutions in the sample had decentratized reporting procedures in the 1978 NSF survey periowl.
For the 18 institutions with eentralized systems, the same reporting concepts were used throughout the institution. hut these tended to vary fromi one institution to another, depending on how comprehensive the central files were in terms of the inchusion of professionals milized in seientific activities. For example, in a number of the sampled institutions, not all posthectorates were included in central payroll files since paments to some were made directly to the indiviluals hy private fomdations. Federal agencies. or other outside sponsors.
The present study and prior in-depth reliability and validity analyses by NSF: indicate that a growing number of institutions are contralizing their reporting methods. As a result, there is a sound basis for concluding that the quality of institutional responses is improving and that improvements can
he expected to continue in future surver wacles as centralized reporting pratices progress.

The Data Base

The dmonal data bases resulting from the NSF-NII Survey of Gradate Science Student Support and Postloc:torals were searched to identify institutions which offered doctoral programs in the sciences and/or engineering during the period from fall 1973 through fall 1976: 286 such institutions were identified. These 286 institutions were then checked against the surver populations of the NSF Survey of Scientific and Engineering lixpenditures at Universities and Colleges for Fiscal Years 1973 through tars and the NSF Survey of Scientific:and Engineering Personnel Emploved at Universities and Colleges. January 1973 through 1978. These matehed comparisons resulted in a total of 271 institutions in the data base comprising the statistical analysis shown in this report.

Because of expansion of surves coverage in I! 17 , only partial data were arailahbe for graduate science students and postdoctorates in 1972 and 1973 . To estimate missing data on graduate science students and prostdoctorates in $19 \pi 2$ and 1973 for this studiy, departments in the 1 !ef data bast: were matuhed with those in the two earlier years and the proportion of toverage in each year was compared with the 1974 data. Thesi: propertions were used to inflate the data in 1972 and 1973 on graduate science students and postdoctorates. This process resulted in a $2 \mathrm{e}-\mathrm{percer}$ increase in 19×2 and a 20 -percent increase in 1973 in the number of graduate science students in the data base. Corresponding adjustments to posthoctoral data were 29 percentin 1902 and 1 percent in 1973. The same procedure was used to estimate data for analyses pertaining to "distinguished" institutions. Rates of data estimation for these institutions were 20 percemt in 1972 and 13 percent in 1973 for graduate science students: and 41 percent in 1972 and 3 percent in 1973 for postdoctorates.

other science resources publications -

	NSF No.	Price			
Science Resources Studies Highlights					
R\&D Funds			Characteristics of Experienced Scientists and Engineers, 1978	79-322	
"Federal Obligations to Universities and Colleges Continued Real Growth in FY 1978'	80-303		Cnaracteristics of Doctoral Scientists and Engineers in the United States, 1977	79-306	
-Greatest Increase in 1978 Industrial R\&D Expendilures Provided by 14% Rise in Companies' Own Funds"	80-300		Review of Data on Science Resources		
'Real Growth Unlikely in 1980 Federal R\&D Funding"	$80-300$ $79-319$	--	S/E Personnel No. 36. "Employment Characteristics of Recent Science and Engineering		
"Total Federal R\&D Growth Slight in 1980 but Varies by Budget Function"	79-314	--	Graduates: The Effects of Work Experience. Advanced Degrees, and Business Cycles"	80-311	\$1.50
S/E Personnel "Employment of Scientists and Engineers Increased Beiween 1976 and 1978 but Declined in Some Science Fields"	8¢-305		No. 34. "Sex and Ethnic Differentials in Employment and Salaries Among Federal Scientists and Engineers"	79-323	\$1.00
"Manufacturing Industries with High Concentrations of Scientists and Engineers Lead in 1965-77 Employmer.t Growth	79-307		R\&D Funas No. 35. "State and Local Government R\&D Expenditures, FY 1977"	80-302	\$1.25
Decline in Recent Science and Engineering Doctoral Faculty Continues into 1978"	79-301	--	No. 33. "U.S. Industrial R\&D Spending Abroad'	79-304	\$0.70
			Reports		
"National R\&D Spending Expected to Reach \$57 Ellion in 1981	80-310	--	R\&D Funds Federal Support to Universities. Colleges, and Selected Nonprofit Institutions.		\because
Detailed Statistical Tables				80-312	\$5.50
R\&D Funds Research and Development in Industry. 1978. Funds. 1978; Scientists and Engineers. January 1979	80-307	--	Federal Funds for Research and Development, Fiscal Years 1978. 1979. and 1980, Volume XXVIII . S/E Personnel	80-315	In press
Federal Funds for Research and Development. Fiscal Years 1978, 1979. and 1980. Volume XXVIII	79-318		Occupational Mobility of Scientists and Engineers	80-317	Inpress
Research and Developrnent in State and local Governments. Fiscal Year 1977	79-327	--	A National Overview	80-316 In press	
S/E Personnel			Projections of Science and Engineering Doctorate Supply and Utilization. 1982 and 1987	79-303	\$2.25
Employment of Scientists. Engineers, and Technicians in Manufacturing Industries, 1977	80-306	--	Composite		
U.S. Sciertists and Engineers, 1978	80-304	--	Technology Resources, 1980	80-308	\$3.75

[^0]:

 * *

 Reproductions supplied by EDRS are the best that can be made * frcm the oriainal document.

[^1]:

 IIt the Vumens Hesedurch fillort Niru Kumblle. N. Y

 110:

[^2]: llinil.
 Ameritan Cammeil on Fillacaljon. "Nontemare-"lorack

 Su川 14:8.

[^3]: Clore Ruspe. Sally Slembiasur, and (ilemm Niver. The

[^4]: Resources. P:limbing the Acoultmic ladider: Docloral Wemmen Seientiats in dromberne: (Wishbinglon, D. (... 1979.)

 "Antional Researda Coumeil, Comunission on Human

[^5]:
 (a)

[^6]:

